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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

PERFORMANCE OF TSENTROPIC NOSE INLETS AT
MACH NUMBER OF 5.6

By Harry Bernstein and Rudolph C. Haefell

SUMMARY

Performance of inlet configurations with a forebody designed
for isentropic external compression was Investigated at a nominal
Mach number of 5.6 and a Reynolds number based on maximum model
diameter of 1.48x106. At zero angle of attack all the configurations
yielded larger total-pressure recoveries than had previously been
obtained with a single-conical-shock inlet. In addition, the inter-
nal thrust coefficients were larger for some of the lsentropic
inlets than for the conical inlet. Performance comparable with
that at zero angle of attack wag obtained at a 3° angle of attack.

For a configuration having an internal passage with a constant-
area section of 2.72 hydraulic diameters, stability was achieved to
mass-flow ratlios as low as 0.62. With the same configuration,
stability was maintained to mass-flow ratios as low as 0.1l by
bleeding alr through orifices in the forebody near the inlet entrance.

INTRODUCTION

An inlet which efficliently decelerates the alr supply is a
prime requirement for high-speed flight with an air-breathing
engine. Preliminary tests to determine the pressure-recovery and
mags-flow ratio characteristics, and hence the effliclencies, of
nose inlets at a Mach number near 5.5 are reported in references 1
and 2. These tests ylelded performance characteristics of a single-
conical-shock inlet and of separation inlets, respectively. Because
of reduction in shock losses, diffusers with forebodies having
initially small cone angles and followed by a contour designed to
produce isentropic external compression should yleld larger pressure
recoveries than conical inlets. Experimental results have con-
ﬁirmad ghis expectation for the Mach number range from 2 to 4

ref. 3).
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In addition to the requirement of diffusion efficiency, there
exists the necesslty of avolding diffuser Instability during
reduced mass-flow operation. Several authors have attempted to
determine the cause, or triggering action, of diffuser instabllity.
In reference 4 it is proposed that the instabllity 1is caused by
disturbances propagating upstream in the decelerating flow and
becoming trapped in the region of sonic velocity, thus causing a
change 1n the shock structure. The author of reference 5 points
out that the vortex sheet originating at the intersection of the
inlet shock waves may cause flow oscillations when 1t enters the in-
let. On the basis of these ideas, the analysis of reference &, and
the experimental results of references 7 and 8, the author of ref-
erence 9 concludes, and shows experimentally, that the incorporation
of a constant-area section downstream of the inlet entrance helps
to maintain diffuser stability. During more recent experiments
with conical-nose inlets having such constant-area sections, sta-
bility was achieved to mass-flow ratlos as low as 0.12 at a Mach
number of 1.91 (ref. 10). k-
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The tests reported herein were undertaken to determine if an
isentropic inlet would yield larger total-pressure recoveries
and internal-thrust coefficients than a conical Inlet at
a Mach number near 5.5. The effects on diffuser stabllity a

of a constant-area section In the diffuser passages and mass-flow
bleed through orifices in the forebody were also investigated. The
tests were conducted at the NACA Lewls laboratory. -
SYMBOLS
The following symbols are used in this report:

A area

M Mach number

m mass-flow rate
P total pressure
7 ratlo of specific heats, 1.4 for air

nkg  kinetic-energy efficiency,

kinetic energy of alr expanded isentropically from diffuser ;
exit to free-stream static pressure i
free stream kinetic energy i

CONFIDENTIAL
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Subscripte:

0 free-stream tube having a dlameter equal to the cowl diameter
at the cowl leading edge

1 combustlon-chamber conditions

APPARATUS

Wind tunnel. - The tests were conducted in the Lewls €- by 6-
inch continuous-flow hypersonlc tunnel at a nominal Mach number of
5.6. The small increase in Mach number above the values in ref-
erences 1 and 2 was belleved caused by changes in the boundary-
layer growth and other factors assoclated wlth the increased
pressure level at which the tunnel was operated during the present
tests. The test-mection total pressure was maintained between
322 and 353 pounds per square inch absolute, with a variation of less
than +2.0 pounds per square inch during any ocne run. The stagna-
tion temperature was 2670 £6° F, The test-section Reynolds number,
based on an average total pressure of 335 pounds per square inch
absolute and on maximum model diameter, was 1.48x105.

Some indicatlions of partial condensation of the alr components
were obtained through use of the light-scattering technique described
in reference 1l. The appearance of condensation (not observed at
the test conditions of refs. 1 and 2) was attributed to operation
at large total pressures, such that the saturatlion temperature of
the air components was greater than the test-section statilc
temperature (ref. 11).

The analysis of reference 12 indicates that the free-stream
Mach number for the partially condensed flow can be determined with
an accuracy sufflicient for the present tests 1f pitot and static
pressures are measured and the Mach number is computed from the
Rayleigh equation. The pressure recovery and mass-flow ratio of
the inlet are based on the free-stream total pressure computed
for the Rayleigh Mach number and are believed, therefore, to be
negligibly affected by the condensation.

The pltot- and static-pressure probes described in reference
13 were used in the calibration of the tunnel. The pressures

were measured with mercury and butyl phthalate manometers,
regpectively.

Schlieren photographs of the flow about the model were obtained
with an exposure time of approximately 2 microseconds.

CONFIDENTIAL
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Model. - The basic inlet configuration 1s shown in figures
1 and 2. The isentropic forebody, designed for a Mach number of
5.5, had an initial cone half-angle of 9.9° and was designed to
compress the flow to Mach number 2.4 at the inlet entrance. No
correction was made for boundary-layer growth on the external-
compression surface; the results herein should therefore not be
construed to be thoge of an optimum design. The external cowl
contour had an initial 1ip angle of 39°, which 1s less than the
shock detachment angle for a Mach number of 5.6 (42.0°). For this
design, the theoretical total-pressure recovery is 0.48, based on
losmes through the forebody tip shock and the diffuser terminal
shock (at Mach number of 2.4) and on an estimated S-percent loss
through the subsonic diffuser.

During the course of the Investigation, it was observed that
factors such as boundary-layer growth, boundary-layer separation,
and machining inaccuracies acted to change the flow configaration
from that assumed In the design of the inlet. In an effort to
offset these effects and capture a complete free-stream tube,
small changes in the geometry of the Inlet were made and the
effects of these Investigated. Two cowls and two forebodies
were employed which differed only in their distribution of inter-
nal passage area (fig. 3(a)). Additional geometry changes were
effected by varying the position of the forebody relative to the
cowl. The forebody coordinates are presented in table I, and the
cowl coordinates are given in table II. Translation of the fore-
body from the reference position (fig. 2) was accomplished by
inserting or removing shims between the forebody and the center-
body. The effect of this transiation upon inlet geometry was
that the inlet entrance area decreased as the forebody was moved
forward (fig. 3(b)). Forebody translation had no effect on the
internal areas at stations more than 0.5 inch from the inlet
entrance. (For the remainder of the report, forward translations
of the forebody will be indicated by a plus (+) sign and backward
translations by a minus (-) sign.) Only two of the configurations
tested had internal contraction:

(1) Cowl A; forebody A; zero translation; internal-contraction
ratio, 1.243.

(2) Cowl B; forebody A; translation of ~0.01 inch; internal-
contraction ratio, 1.032.

Inlet characteristics were also obtained with roughness
(number 80 silicon carbide grit) on the forebody tip to induce
transition of the boundary layer.
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For several tests, two rows of 36 orifices with 1/8-inch
dlameters were drlilled in forebody B ilmmedlately downstream of
the inlet entrance (fig. 4) in order to bleed air from the sur-
face of the forebody and thus delay separation of the boundary
layer. This alr was exhausted through the center of the model
to the wind tunnel.

The model instrumentation, described in reference 2, is
visible in figure 1(b). The pressures were measured with a differ-
ential mercury manometer.

REDUCTION OF DATA

The results of a Mach number survey at an axlal statlon 33%

inches downstream of the tunnel throat are presented in figure
5. The model was located with the tip of its forebody at a sta-

tion 331 inches from the tunnel throat. The Mach numbers, deter-

mined by use of the Rayleligh equation from pitot- and static-
pressure measurements, were reproducible within 3 percent. In-
asmuch as the variations from a Mach number of 5.6, indicated in
figure 5, are generally within the reproducibility, a nominal Mach
number of 5.6 was chosen for computations of inlet performance.

The test-section pitot pressure was measured at locatlons
approximately 3/4-1nch‘ahead of the cowl leadlng edge after each
model test. The free-stream total pressure was computed from
these measurements and from the normal-shock relations for a Mach
numbexr of 5.6.

The method of computation of diffuser pressure recovery and
mags-flow ratio was the same as that described in reference 2.
The pressure recoveries and mass-flow ratios reported for stable
operation are estimated to be accurate to within 1 percent of their
values. The data for unstable operation represent time-average
values; the pressures appeared constant on the manometers because
of inertia of the manometer system. Therefore, no estimate of
accuracy has been made for these data, which should be used only
ag & qualitative indication of performance.

DISCUSSION OF RESULTS
Flow about Forebody

An enlarged schlieren photograph of the flow over the fore-
body (diffuser cowl removed) is presented in figure 6. There is
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no evidence of boundary-layer geparation along the external-
compression surface. The curvature of the tip shock at its
downstream end Indicates that the compression waves generated
by the forebody did not meet at a point. This is attributed
to design and machining inaccuracies and to the boundary layer,
all of which change the forebody contour from an lsentropic
compression surface.

)

Inlet Performance S

M)

P
The variations of total-pressure recovery = with mass-
O‘
m
flow ratio -t at zero and 3° angles of attack are shown in

n
0

figures 7 to 13 for the varlous configuratlons tested. Figures
14 to 19 present typlcal schlieren photographs of the flow
configurations.

A summary chart of the performances is given in table III.
The values of the kinetic-energy efficiency were computed for the
operating Mach number of 5.6 from the equation

Also Included in the table for comparison are the performance
figures for a single-conlcal-shock inlet tested during the
present investigation. The conical inlet, which was the

same model discussed in reference 1, was operated with the cone
retracted 0.01 inch from its original design location and with
roughness on the cone tip. This was the optimum configuration,
as indicated In reference 1. 1Its peak recovery ls 2.9 percent
lower than that glven in reference 1. This decrease was belleved
caused by the higher Mach number at which the present tests were
conducted.

Effect of roughness. - From the summary chart 1t is seen that
at zero angle of attack the use of roughness on the forebody tip
caused an increase in the mass-flow ratio at peak recovery, although
there was a decrease in the maximum pressure recovery. At a 3°
angle of attack, the presence of roughness had essentially no
effect on the mass-flow ratio at peak recovery, but the total-
pressure recovery increased slightly.

CONFIDENTIAL
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With no roughness, boundary-layer separation within the inlet
was Indicated by the decreasing mass-flow ratio in the stable
operating range as maximum recovery was approaeched (figs. 7 and
9(a)). The use of roughness was a sufficient means for preventing
this separation (fig. 7) except for operation close to maximum
recovery (fig. 9(b)).

During unstable operation, when no roughness was used, sepa-
ration of the boundary layer at the forebody tlp occurred as soon
as the outlet area was decreased beyond its value at maximum
recovery (figs. 15(a) and 17(a)). The application of roughness to
the forebody tip resulted in intermittent separation and reattach-
ment of the forebody boundary layer when the outlet area was only
slightly below 1ts value at maximum recovery. Hence, operation at
intermediate values of pressure recovery and mass-flow ratio was
permitted, in contradistinction to operation without roughness (e.g.,
ef. fig. 10(a) with fig. 10(b)). For unstable operation with
roughness, the terminal shock oscillated over the forebody ahead of
the inlet entrance (figs. 15(b) and 17(b)), except for the inter-
mittent periods during which separation occurred at the forebody
tip.

Effect .of cowl and forebody contour. - The effects of cowl
and forebody changes are consldered for a forebody translatlon
of zero. With no roughness, at both zero and 3° angles of attack,
a change from cowl A to cowl B, while still using forebody A,
resulted In reduction of both the peak pressure recovery and the
mass-flow ratlo. The reduction in mass flow was believed to be
caused by a forward movement of the boundary-layer separation
point within the Inlet, resulting in a smaller effective throat
area. Figure 3 shows that between axlal stations 0.12 and 0.66
the internal area decreases less for cowl B than for cowl A.
Hence, the pressure gradient in the region (subsonic flow) was
less favorable for cowl B, which may account for the forward move-
ment of the separation polnt. The reduction in total-pressure
recovery was caused by the increased flow splllege which resulted
in a forward movement (into a higher Mach number region) of the
terminal shock.

With roughness, at zero angle of attack, the change to cowl B
resulted in an Increase In the total-pressure recovery and a decrease
In the mass-flow ratio at peak recovery. A comparison of flgures 7
and 9(b) shows that these changes are caused by the increased sta-
bility range of the cowl B and forebody A comblnation. The increase
in Internal passage areas also resulted In a larger maximum mass-
flow ratio,

CONFIDENTIAL
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The cowl B and forebody B combination, at zero angle of attack
(fig. 11), showed stabllity over a considerable mass-flow ratilo .
range (to ratios as small as 0.62). This combination had an inter-
nal passage which incorporated a constant-area section of 2.72
hydranlic diameters, located as shown in figure 3. The results
for a forebody translation of -0.010 inch (fig. 11(b)) are unusual
in that a dip in the recovery occurred as the mass-flow ratio was
decreased from 0.87 to 0.62, The flow was unstahle; that 1s, the
terminal shock oscillated over the forebody ahead of the inlet
entrance when the slope of the pressure-recovery mass-flow ratio
curve was positive, as predicted in reference 6. In general, this
combination ylelded lower maximum total-pressure recoveries and
mass-flow ratios than the two previous combinations. The mass-flow
ratio at maximum recovery with no roughness was larger, however,
than both of the other cowl and forebody combinations at zero angle
of attack.

3103

Effect of bleed through forebody. - The performance curves of
figure 13 show the large ranges of mass-flow ratio in which stable
operation occurred after orifices were drilled in forebody B for
bleeding air out of the entrance annulus (to ratios as small as 0.11).
With no bleed through these orifices, the performance for & zero
forebody translation was essentlally the same as was obtained
before the orifices were drilled (fig. 11(b)). Hence, the increased ‘
range of stabllity can be attributed solely to the bleeding
rather than to surface roughness caused by the presence of the ori-
fices. There was, however, a decrease In the maximum mass-flow
ratio because some of the flow was bypassed through the orifices.

The inlet, of course, could be designed to bleed only when stable
flow at low mass-flow ratios 1s required.

In certain intermediate ranges of mass-flow ratio, schlieren
obgervations indicated oscillations of the diffuser terminal shock.
Data taken in this range of operation are indicated by talled
symboles. The reasons for this instability have not been determined.

Figure 19 is a schlieren photograph of the inlet with bleed
through the forebody operating at a mass-flow ratio of 0.18. Inas-
much as the terminal shock is at about the same location relatlve
to the cowl as in previous photographs pertalning to operation with-
out bleed at substantially larger mass-flow ratios (fig. 18(a), e.g.),
apparently much of the flow 1s being discharged through the bleed
system. In fact, the forebody orifices provide a bypass of varying
mass-flow capacity because the entrance static pressure (at orifice)
increases with a decrease in mass-flow ratio (forward movement of
the terminal shock) as shown in figure 20, The terminal shock,
therefore, need not move as far forward of the inlet entrance as .
1t would 1if the same amount of mass flow were spllled entirely

CONFIDENTTAL
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ahead of the inlet. The present bypass arrangement thus mein-
tains the additive drag of the inlet near a minimum throughout a
large range of mass flows without requiring changes in bypass
area and, at the same time, provides diffuser stability.

Effect of forebody translation. - The effects of forebody
translation were essentially the same for each of the conflgura-
tions for which translation was Investigated. The effects will
therefore be discussed for the cowl B and forebody A combination
operating at zero angle of attack.

With no roughness, increases in the forebody translation up to
+0.020 inch resulted in increases in the peak total-pressure recovery,
while no change occurred in the mass-flow ratio at peak recovery
or In the maximum mass-flow ratlo. For a +0.020-inch translation
(f1g. 9(a)), the mass-flow ratios were higher over most of the
stable range.

With roughneass on the forebody tip, the maximum mass-flow
ratio was the same for both the zero and +0.010-inch translations.
Fallure of the mass-flow ratio to change with the forebody transla-
tion and the concurrent entrance area change indicates the presence
of an effective minimum-area section within the diffuser caused
by the boundary layer. A +0.020-inch translation resulted in a
decrease In the maximum mass-flow ratio because of the reduction
in the effective minimum passage area (now located at the inlet
entrance). The decrease in maximum mass-flow ratio obtained
with a -0.010-inch translation was caused by the relocation of
the bow wave In a reglon of higher Mach number. The resulting
increased total-pressure losses require, for the same minimum
passage area, a decrease in the mass flow. DPeak performance
was essentially independent of forebody translation, except
for a +0.020-1Inch translation for which the maximum recovery
was increased but the mass-flow ratio reduced.

Effect of angle of attack. - With no roughness, the change
from zero to a 30 angle of attack generally caused a decrease in the
peak pressure recovery. The mass-flow ratio, however, was increased
throughout the stable range (for a given recovery) for almost all
the configurations tested.

With roughness, operation at a 3° angle of attack generally
had little effect on the maximum total-pressure recovery but
produced a decrease in the mass-flow ratio at peak recovery. For
operation with cowl B and forebody B, stability was achlieved, as for
zero-angle-of-attack operation, over a range of mass-flow ratios,
except for +0.02-inch forebody translation (fig. 12(b)). For a
-0.01-inch translation, the stability was obtained only at a

CONFIDENTIAL
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negative angle of attack. This effect may be caused by eccentri-
city of the cowl and forebody or by tunnel flow irregularities.

For the cowl B and forebody B configuration with bleed (fig. 13(b)),
the recovery was maintained to mass-flow ratios as low as 0.14,
although in an intermediate range of mass-flow ratios the terminal
shock was unsteady.

Performance Comparisons

3103

A comparison of the performances of the conical and Iisentropic nose
inlets shows that, at both zero and 3° angles of attack, total-
pressure recoveries, and hence klnotic-energy efficlencies, sig-
niflcantly greater than those of the conical-nose inlet were
obtained with the models of the present investigation. The mass-
flow ratios of the lsentropic configurations were, in all cases,
less than that of the conical inlet.

Some typical internal thrust coefficients (based upon A )
for zero-angle-of-attack operation have been calculated for 0
engines with the conical and isentroplic inlets. The internal
thrust force is that caused by the change of momentum of the alr
flowing through the engine. In these calculations, the following .
factors were assumed:

(1) Flight at 43,000 feet (This would make the flight and
test Reynolds numbers equal.)

(2) Completely expanded exit

(3) Heating value of fuel of 18,000 Btu per pound

(4) Fuel-air ratio of 0.03; combustion efficiency of 0.9
(5) Mach number at entrance to combustion chamber of 0.15

The results of the intermal-thrust-coefficient computations are
glven in table IV.

As shown 1n this table, internal thrust coefficlents somewhat
larger than those of the conical inlet are obtainable with sev-
eral of the lsentropic configurations. For some of the
configurations, larger values of internal thrust could be cbtalned
for operation with less than maximum recovery but with a
larger mass-flow ratio. Thils results because the kinetic-energy
efficlency does not change much with pressure recovery in the .
present range of recovery and Mach number. No attempt was made
to find the optimum operating point for a configuration. Thrust
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coefficlents for 3° angle-of-attack operation have approximately
the same magnitude as those for zeroc-angle-of-attack operation,
since there was, in general, little change In pressure recovery
and mass-flow ratio with angle of attack.

Because the lsentropic inlets operate at mass-flow ratios
less than 1, the penalty of additive drag associated with the flow
spillage must be Incurred. This deficiency in the performance
of iseutropic inlets might be avoided by further developmental
changes In the diffuser design. Any modifications serving to
reduce the additive drag would also serve to Increase the internal
thrust because of the increase in captured mass flow.

It is important to note that the higher combustion-chamber
pressures obtained with the 1sentropic inlets might be a neces-
sity for efficient combustion during high-altitude flight.

Also, the higher recoveries result in smaller required combustion-
chamber areas when a comparison is made on a basls of equal mass-

flow rates ml and combustion-chamber Mach numbers Ml' As a

result, the high-recovery inlet has the advantage of having more
space (between the combustion chamber and external contour)
available for auxiliary equipment.

The values of Internal thrust calculated for the inlets with
bleed are small because of the small maxlimum mass-flow ratios. It
was assumed that no momentum was recovered from the bypassed air.
Except when off-design performance with small exit mass flow is
required, the inlet could be operated without bleed to maintain
large values of thrust during flight at design conditions.

SUMMARY OF RESULTS

Performance of Inlets with a forebody designed for isentropic
external compresslon was Investigated in the Lewis 6- by 6-inch
hypersonic tunnel at a nominal Mach number of 5.6 and a Reynolds
number based on maximum model diameter of 1.48x106. The configu-~
rations tested involved two cowls and two forebodies which
differed only in thelr distribution of Internal passage area,

The effects of roughness on the forebody tip to induce transition
of the boundary layer, of varylng the position of the forebody,
and of bleeding alr from the surface of the centerbody were slso
investigated. Results of these test are as follows:

1. At both zero and 3° angles of attack, all the isentropic
configurations ylelded larger total-pressure recoveries
than had previously been obtained with a single-conical-shock

CONFIDENTTIAL
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inlet. None of the configurations, however, was able to capture
a full free-stream tube. The internal thrust coefficlents were
larger for some of the isentropic inlets than for the single-
conical-shock inlet.

2, For the confligurations having iInternal passages with a
constant-area section of 2.72 hydraulic diameters, stable flow
was obtained over a large range of mass-flow ratios. By bleeding
alr from the surface of the forebody immediately downstream of
the inlet entrance, the range of stable flow was extended to
mass-flow ratios as low as 0.11. For configurations without a
constant-area section and without bleed, the flow was unstable
at mass-flow ratios less than that at peak recovery.

3103

3. The use of roughness on the forebody tip was sufficlent
measure to prevent boundary-layer separation within the lnlet
during stable operation, except in the vicinity of maximum
recovery. In addition, with roughness the inlet could operate
(unstably) at intermediate values of the total-pressure recovery
and mase-flow ratio in contradistinction to operation without
roughness. This effect was most pronounced at angle of attack.

Lewls Flight Propulsion Laboratory
National Advisory Committee for Aeronautice
Cleveland, Ohio, March 8, 1954
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TABLE I. - FOREBODY COORDINATES FOR ISENTROPIC INLET

CONFIDENTIAL

(a) Forebody A

NACA RM E54B24

Station distance from| Forebody radius, | Station distance from| Forebody radius,
forebody tip, in. in. forebody tip, in. in.

0] 0] 2.700 0.6233
.100 .0175 2.800 .86977
.200 .0351 2.825 . 7160
.300 0526 2.850 . 7299
.400 .0700 2,900 . 7153
.500 .0875 3.000 .783
.600 . 1049 3.100 .803
. 700 L1233 3.200 .815
.800 .1400 3.300 .823
.900 L1574 3.400 .828

1.000 .1750 3.500 .830

1,100 .1924 3.600 .828

1.200 .2100 3.700 .825

1.300 .2274 3.800 .818

1.400 .2449 3.900 .810

1.500 .2623 4.000 .801

1.600 .2798 4,100 .792

1,700 .3010 4,200 .783

1.800 3234 4,300 775

1.900 .3450 4.400 .767

2.000 .3695 4,500 . 758

2.100 .3961 4,600 .7150

2.200 .4239 4,700 . 741

2.300 .4554 4,800 . 132

2.400 .4896 4,900 724

2.500 .45273 5.000 . 715

2.600 .5701 5.100 . 707

CONFIDENTIAL
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TABLE I. ~ Concluded. FOREBODY COORDINATES FOR ISENTROPIC INLET

(b) Forebody B

[Coordinat.es of other stations are same as for forebody AJ

Station distance from | Forebody radius,
forebody tip, in. in.
3.0 0.783
3.1 .798
3.2 .806
3.3 811
3.4 .814
3.5 .815
3.6 .815
3.7 .814
3.8 .811
3.9 .806
4,0 .800
4,1 .792
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TABLE III. - SUNMARY OF PERFORMANCE OF INLETS

17

Forebody Ro o8 No_roughnes:
translation,f cow) A; | Cowl B; | Cowd B; | Cowl B; [Stngle-contcal-] Cowl A; | cow B; | Cowi B;
. forebody Alforebody A{forebody B|forebody B| shock inlet |forebody Afforebody A|forebody A
! i vith bleed
Zexro angie of attack
Marimom total- «0.01 17.7 15.4 10.8
pressure 0 17.% 18.4 15.6 17.6 19.5 18.7 15.9
rosovery, +0.01 18.0 17.4 17.2 19.7
percent +.02 19.9 19.5 20,8 20.8
Maximum kinetid -0.01 89.8 88.7 85.8
snergy effi- [ 89.7 90.1 88.8 89.8 90.5 90.2 89.0
clency, per-{ +.01 89.9 89.6 89.6 90.6
cent +.02 90.7 90.5 90.9 81.0
Mans-flow -0.00 0.88 0.87 1.00
ratio at 0 0.93 .88 T4 0.16 0.84 0.76 0.87
waximun +.01 .89 .84 .20 .76
recovery +.02 7 .63 .10 .15
Maximum -0.01 0.9 0.88 1.00
wass-flow [+ 0.93 .97 .91 0.83 0.93 0.817 0.80
yatio +.01 .97 9 .82 .87
+.02 .85 .87 .81 .87
Figure 7 9(b) 11(b) 13(a) | eee-- 7 9(a) 11(a)
Angle of attack, 3©
- Maximus total- -0.01 18.7 15.9 11.6
pressure 0 18.7 17.7 17.7 17.3 16.9 16.4
recovery, +.01
percent +.02
' Maximum kinetic -0.01
energy eoffi- [
ciency, per- +.01
cent 4,02
' Mass-flow -0.01
ratio at [o}
maximus +.01
recovery +.02
Maximum -0.01
mass-flow 0
ratio +,01
+.,02
. Figure
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TABLE IV. - INTERNAL THRUST COEFFICIENTS

3]
Fore-| Cowl Forebody Total- | Mags- | Intermal :lo,;}
body translation, | pressure| flow thrust
in. recovery| ratlo | coefficient
No roughness
A A 0 0.19% | 0.84 0.46
0 0.187 | 0.76 0.41
+0.01 0.197 | 0.76 0.41
A B +0.02 0.208 | 0.75 0.41
0.204 | 0.83 0.46
0.158 | 0.87 0.44
B | B 0 ~0.153 | 0.90 0.46
Roughness
A A 0 0.175 | 0.93 0.49
-0.01 0.177 | 0.88 0.47
0  0.184 | 0.88 0.47
A B +0.01 0.180 | 0.89 0.47
0.173 | 0.94 0.50
0.142 | 0,97 0.48
+0.02 0.199 | 0.77 0.42
B B -0.01 0.154 t 0.87 | 0.44
+0.01 0.174 | 0.84 0.44
0.162 ] 0.88 0.45
B | B 0 0.142 | 0.78 0.38
with | +0.01 | 0.116 [ 0.74 0.34
 blesd +0.02 | 0.128 | 0.78 0.37 .
Single-conical-shock 0.108 | 1.00 0.46 |
inlet ‘ f
|
!
é
!
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’-‘ e w o ""“"—"ﬂ‘. _ V w M e “%h:‘;' 4 + 7 !
—— . Mo k‘ ﬁ :
i — e e !

C-33395

(a) Model assembled.

Figure 1. - Isentropic inlet mounted in Lewis 6~ by 6-inch hypersonic tunnel.
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Internal passage area, sq. in.

.‘5

o4

.2

‘5

.4
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CONFIDENTIAL NACA RM ES4B24
Cowl Forebody
. o) A A
w] B A
© B B
__Conétant-area__
section r/,<>
PRt 7
hhit}Nh"‘rl~-—cr—F”{T" ‘//////U
28
N | ’v,»”///
V\~:/v
(a) Zero forebody translation; effects of cowl and forebody changes.
Forebody
translation,
in.
O (0]
0 +.010 4/"
O +.020 4
/’A— A "0010
| 4’A L ‘ w,
~0_| _,,dr"'//'
W7Z88 —
d/
0 .2 o4 .6 .8 1.0

Axial distance from inlet entrance, in.

(b) Cowl B; forebody A; effects of forebody translation.

Figure 3. - Internal-passage-area distribution,

1.2

cote
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C-34285
Figure 4. - Forebody B with orifices for bleeding air from surface.

CONFIDENTIAL

23




24 CONFIDENTIAL NACA RM ES4B24

Alr

flow /
'

Mach number

Figure 5. - Mach number calibration 33% inches

downstream of throat of Lewis 6~ by 6-inch
hypersonic tunnel.
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Total-pressure recovery, Pl/P0

CONFIDENTIAL NACA RM E54B24

cotie

O No roughness
{ With roughness on forebody
tip ‘
Talled symbols indicate
unstable flow

.20 |
A
.16 | // [ \;D
L/ ®
,e/
‘ ‘ Q
.12}
1 | \,
v~ '
.08
'04.2 4 .6 8 1.0

Mass-flow ratio, m,/m,

Figure 7. - Diffuser performance at zero angle of attack. Cowl Aj;

forebody A; zero forebody translation.
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Tailed symbols indicate
unstable flow,.
.20
d
5}
)
Q
&
]
3 26 y
/| P
& /
o /
o / °
7/
{B .12 ‘ /
5 /
o
0 /
Q
5 /
§ .08 / .
4
: / )
3 /
8 /
.04
]
7
0 .2 .4 .6 .8 1.0

Mass-flow ratio, m)/m,

Figure 8. - Diffuser performance at 3° angle of attack. Cowl A;
forebody A; zero forebody translation; no roughness.
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¥ C-35125

(b) Roughne:c on foretody tip,

Firure 14. - .'chlieremn photosraphs of diffuser at zero angle o attack. .table flow.
I p
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c0Te

(a) No roughness.

(b) Roughness. C-35126

Figure 15. - Elimination of flow separation during unstatle flow by using roughness on
forebody tip. Zero angle of attack.
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(a) No roughness.

C-35127
(b) Roughness.

Figure 16. = Schlleren photographs of diffuser at z° angle of attack. Stable flow,
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(a) No roughness.

C-
(b) Roughness. 35128

Figure 17, - Elimination of flow sciaration during uustable operation by using roughness
on foretody tip. Angle of attack, 3°.
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(b) Angle of attack, 3°,.

Figure 18. ~ Schlieren photographs of diffuser with cowl B and forebody B showing opera-
tion at minimum steble mass flow. Forebody translation, -0.010 inch; roughness on

forebody tip.
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PO

C-35130

Figure 19. - Schlieren photograph of diffuser at 3° mngle of attack with bleed through fore-
body orifices showing operation at minimum stable mass flow. Cowl B; forebody B; zero
forebody translation; roughness on forebody tip.
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Figure 20. -~ Typical variation of measured static pressure at

forebody orifices.
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